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Deconfined fermions but confined coherence?
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‡ IRC in Superconductivity and Cavendish Laboratory, University of Cambridge, Cambridge
CB3 0HE, UK

Received 18 June 1996

Abstract. We propose that in highly anisotropic, strongly correlated materials a novel
breakdown of Fermi-liquid theory can result: the motion of the electrons in one or more
directions may become entirely incoherent due to interaction effects even in the limit of
zero temperature and an arbitrarily pure system. This paper presents an introduction to our
arguments as to why quantum coherence is relevant to hopping between liquids of strongly
interacting electrons and how it should be lost for sufficiently strong interactions, even though
the hopping may remain relevant in a renormalization group sense. In this case a state
with confined coherenceobtains, even though the electrons themselves are not confined to
individual planes in the low-energy limit. This proposal offers a natural resolution of certain
apparent contradictions in the experimentally determined properties of the high-temperature
superconductors and canuniquely explain the striking magnetoresistance anomalies observed
for the organic superconductor(TMTSF)2PF6.

1. Motivation

Interest in the physics of strongly correlated, anisotropic materials has undergone a
resurgence since the discovery of the cuprate superconductors. One of the central questions
in the theory of these materials is the question of under what circumstances, if any, real bulk
materials exhibit effective dimensionalities other than three. The question is certainly an
important one in the under- and optimally doped cuprates because they exhibit qualitatively
anisotropic transport. For example, the temperature dependence of thec-axis resistivity in
under- and optimally doped La2−xSrxCuO4 is non-metallic at low temperatures [1], while
theab-conductivity remains metallic essentially all the way down toTc. YBa2Cu3O6+x and
Bi2Sr2CaCu2O8 exhibit activatedc-axis conduction at low temperatures, withab-transport
again remaining metallic [2]. Meanwhile, the frequency-dependent conductivity is perhaps
even more anomalous with no signs of anything remotely like a Drude peak with any
appreciable weight in thec-axis conductivity in either underdoped YBa2Cu3O6+x [3] or
La2−xSrxCuO4 [4]. In fact, c-axis conduction is rather generically incoherent in these
materials and has anomalous temperature dependence in a range near toTc. This is somewhat
difficult to understand given that the scale of the expectedc-axis bandwidth fromab initio
band-structure calculations is typically of order 2000 K [5].

Interaction effects can clearly reduce this and one might attempt to explain some of
the anomalies in thec-axis conduction in terms of a reducedc-axis bandwidth. Indeed,
it is in principle possible for sufficiently strong interactions to result in some non-Fermi-
liquid (NFL) in-plane state with respect to which the out-of-plane hopping would be an
irrelevant perturbation and this might go a long way towards explaining some of the transport
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anomalies. However, the criterion for the renormalization group irrelevance of the interplane
hopping is that

lim
3→0

32 � lim
3→0

∫ 3

0

∫ ω

0

∫ ω

0
dω dω1 dω2 δ(ω − ω1 − ω2)ρe(kF + 0+, ω1)ρh(kF + 0−, ω2)

(1)

whereρe(kF +0+, ω1) is the spectral function for inserting an electron with momentum just
outside the Fermi surface andρh(kF +0−, ω2) is the spectral function for creating a hole with
momentum just inside the Fermi surface. The requirement is clearly violated if either the
electron or hole spectral function diverges at zero temperature and frequency on the Fermi
surface, with the other either diverging or remaining finite. In fact, the photoemission data
[6, 7] show a sharp quasiparticle peak at temperatures aboveTc and it appears pathological
to assume that the peak does not narrow arbitrarily on the Fermi surface asT → 0, except
for for impurity effects which will not affect the renormalization group status of the hopping,
t⊥, unless the impurity scattering rate is large compared to the renormalized hopping,tR⊥ .
There is also no theoretical reason for a particle–hole anisotropy strong enough to cause
the hole spectral function to vanish, and it therefore appears highly unlikely thatt⊥ is
renormalization group irrelevant. It might be possible fortR⊥ to remain finite, but small
enough that even a temperature of 40 K might be taken to be high compared to thec-axis
bandwidth. However, in that case, one expects to be able to describe the conductivity in
terms of hopping conduction and one expects

σc(ω) ∝ 1

ω

∑
k

∫
dε ρ(k, ε)ρ(k, ε + ω)(nf (ε) − nf (ε + ω)). (2)

This predicts a Drude peak at low frequency given the form of the spectral function observed
in the photoemission, but no such peak is seen.

This does not constitute an experimentalproof that something very peculiar is going
on regarding the dimensional crossover in the cuprates, but it is certainly suggestive. What
seems to be required is a fixed point at whichtR⊥ is not zero, or even particularly small, and
yet conduction is somehow very different from the usual, three-dimensional case. It is the
purpose of this work to make a specific proposal for such a fixed point: a state in which
coherent transport is intrinsically confined to the planes, despite the fact that the electrons
themselves are not [8, 9]. In this state a material would not be three dimensional in the
usual sense, but neither would it be purely two dimensional.

2. A simple model of coupled non-Fermi liquids

Unfortunately, our understanding of 2D NFL states is not well enough developed to permit
precise calculations to be made. However, it is possible to consider the analogous problem
in one less dimension, where we understand the Luttinger-liquid [10, 11] behaviour of
interacting fermions. We therefore consider the problem of Luttinger liquids coupled by
interliquid single-particle hopping as a potential paradigm for coupled NFLs [12].

This problem is far from new: as early as 1974, in the context of the newly discovered
quasi-1D organic conductors, Gorkov and Dzyaloshinskii discussed how various key
properties of a 1D electron ‘chain’ could be destroyed by the presence of interchain hopping
[13]. Many other authors have since addressed the problem, using various techniques
[14]. To our knowledge, however, ours is the only approach which directly addresses the
question of interliquidcoherence. This question is of crucial importance, for many of the
other approachesbegin with an anisotropic 2D electron gas (or its two-chain analogue),
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a state with manifestly coherent interliquid hopping, upon which interactions are treated
perturbatively. In those approaches which do not begin with the anisotropic 2D electron
gas, we believe that, while in some cases unreasonable approximations and/or errors have
been made, in general, these works have all correctly demonstrated the relevance oft⊥ but
have simply not addressed the question of its coherence. In general, past workers have
argued that the flow away fromt⊥ = 0 should lead to higher-dimensional coherence and,
for infinitely many chains, to a Fermi liquid or to some other (CDW, SDW or BCS) known
higher-dimensional fixed point, mainly because of the lack of an alternative proposal. We
are proposing the confinement of coherence as such an alternative.

The key construct needed in investigating the nature of interliquid hopping is the electron
spectral function,ρ(k, ω):

ρ(k, ω) = θ(ω)ρ+(k, ω) + θ(−ω)ρ−(k, −ω)

=
∑

n

{θ(ω)|〈nN+1|c†
k|0N 〉|2δ(ω − EN+1

n )

+ θ(−ω)|〈nN−1|ck|0N 〉|2δ(ω − EN−1
n )}.

In a FL,ρ(k, ω) is dominated by a term which sharpens up to aδ-function ask → kF . This
term, of weightZk 6= 0, is the quasiparticle part ofρ(k, ω). The remainder ofρ(k, ω) is
featureless so, as far as low-energy properties are concerned, only the quasiparticle part of
ρ(k, ω) matters. If〈i, j〉 label physically adjacent liquids, andk in-liquid momenta, then
an interliquid hopping term of the form

H⊥ = t⊥
∑

〈i,j〉,k
(c

†
i,σ (k)cj,σ (k) + HC)

will directly couple a quasiparticle state in one liquid with anenergy-degenerate
quasiparticle state in the physically adjacent liquids. In this case, we should be doing
degenerate perturbation theory and starting with interliquid Bloch states of precise interliquid
momenta. An interliquid band will therefore form, entailing a coherent interliquid velocity
and hence coherent interliquid transport.

In contrast, in a Luttinger liquid (or any NFL, by definition) there are no Landau
quasiparticles. The quasiparticle weight,Zk, is zero, but in a non-trivial way. The Luttinger-
liquid spectral function differs from that for a FL in that its singularities are power law in
nature, even at the Fermi surface. For the physically most relevant case of spin-independent
electronic interactions,ρ(k, ω) has singularities atω = ±vck, vsk determined by a single
exponentα, andvc andvs denote velocities of propagation of charge and spin currents. We
believe that this could potentially lead to the confinement of coherence to the individual
Luttinger liquids. To see how this might come about, let us begin with a simple model
within which to discuss quantum coherence and incoherence: a two-level system (TLS)
coupled to a dissipative bath.

3. Incoherence and the two-level system

To begin with we define, following reference [15], the TLS model with the Hamiltonian

HTLS = 1

2
1σx +

∑
i

(
1

2
miωix

2
i + 1

2mi

p2
i

)
+ 1

2
σz

∑
i

Cixi . (3)

HereCi is the coupling to theith oscillator, andmi , ωi , xi andpi are the mass, frequency,
position and momentum of theith oscillator, respectively.
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We restrict our discussion of the model to zero temperature and the so-called ohmic
regime [15] where the spectral density of the bath is given by

J (ω) = π

2

∑
i

Ci

miωi

δ(ω − ωi) = 2παω exp(−ω/ωc). (4)

α is a positive constant measuring the strength of the coupling to the bath andωc is a cut-off
frequency.

The model describes a single quantum mechanical degree of freedom which can be in
either of two states and which is coupled to a bath of harmonic oscillators. The environment,
represented by the bath of oscillators, influences the tunnelling because the bath is sensitive
to which of the states the spin is in. Hereafter we will refer to the discrete degree of freedom
as a ‘spin’ for convenience. This is appropriate since we are describing the spin with Pauli
matrices.

The model provides the prototypical example of a quantum–classical crossover since,
for Ci = 0 the model represents the quantum mechanics of an isolated two-state system,
whereas for sufficiently strong coupling to the environment the dynamics of the spin, if
followed without reference to the oscillator bath, is dissipative and no quantum coherence
effects are observable [15]. In fact, this is how one generally expects classical behaviour
to emerge for macroscopic systems: the macroscopic degrees of freedom exchange energy
with an enormous number of unobserved microscopic degrees of freedom and therefore
different histories are unable to maintain a definite relative phase long enough for quantum
interference effects to manifest themselves.

What sort of quantum interference effects do we expect to be able to observe in the TLS
for sufficiently weak coupling to the environment? Consider a model where the coupling
to the environment vanishes, i.e.α = 0, and the system is prepared in a state where the
spin is in aσz-eigenstate. The exact eigenstates of the spin are theσx-eigenstates which
are split by an energy1, so the initial state of the system is a superposition of these two
states of different energy with a definite phase between the two states in the superposition.
Although not constant, this relative phase remains well defined indefinitely and therefore
results in observable oscillations in the expectation value ofσz, in fact (in units where
h̄ = 1) 〈σz(t)〉 = cos1t . In the TLS model the oscillations persist for a range of couplings
to the environment, albeit with coupling-dependent damping of the oscillations.

To study these oscillations the standard theory of the TLS focuses onP(t), the
probability of finding the system in theσz = 1 state fort > 0 for a system which has
been prepared by clamping the spin into theσz = 1 state for allt < 0, allowing the
oscillator bath to relax to equilibrium in this configuration and finally releasing the spin at
t = 0. Note that calculation ofP(t) is equivalent to determining〈σz(t)〉, since the two are
simply related by〈σz(t)〉 = 2P(t)−1. P(t) is an appropriate quantity to study for questions
about macroscopic quantum coherence since, if the spin represents a generic macroscopic
quantum degree of freedom which the experimenter can observe and control, whereas the
oscillators represent microscopic degrees of freedom which are beyond both control and
observational capacities of the experimenter, it is exactly the sort of preparation used in the
definition ofP(t) which is possible experimentally. The signature of quantum coherence in
P(t) will be the presence of oscillations (damped or otherwise) in contrast to the incoherent
relaxation,P(t) ∼ 1

2(1 + e−0t ), which results if the spin is sufficiently strongly coupled to
the environment, occurring, as we shall see, whenα > 1/2 [15].

For further discussion of the TLS problem, it is convenient to make a canonical
transformation on the original model, so that the coupling to the oscillators is removed,
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by taking

H ′
TLS = ÛHTLSÛ−1 (5)

where

Û = exp

(
−1

2
σz

∑
i

Ci

miω
2
i

p̂i

)
. (6)

p̂i is the momentum operator of theith oscillator. The new Hamiltonian takes the form

H ′
TLS = 1

2
1(σ+e−i� + HC) + Hoscillators (7)

where

� =
∑

i

Ci

miω
2
i

pi .

The tunnelling operator connecting the two states has been replaced by an operator which
creates and destroys excitations of the oscillator bath, as well as changing the state of the
spin.

In this formulation,P(t) can be reinterpreted as the probability of findingσz(t) = 1 for
a system in which1 is suddenly switched on at timet = 0 with the system in the1 = 0
ground state withσz = 1. The previous definition in which the spin was clamped in the
σz = 1 eigenstate for all negative times and the oscillators were allowed to adapt to the
clamped state is equivalent. Consider, the two-point correlation function ofσ+e−i�, which
obeys

〈σ+e−i�(t)σ−ei�(0)〉 = exp

{
−

∫ ∞

0

1 − e−iωt

ω2
J (ω)

}
= exp

{
−2α

∫ ∞

0

1 − e−iωt

ω
e−ω/ωc

}
∼ eiπα(ωct)

−2α. (8)

From the correlation function we can immediately construct the spectral function of the
operator ei� in the low-energy, universal regime:

ρ�(ω) =
∑
m

|〈m|ei�|GS〉|2δ(ω − Em) = 0−1(2α)θ+(ω)ω−1+2αω−2α
c exp(−ω/ωc) (9)

where {m} is a complete set of oscillator eigenstates with energiesEm and |GS〉 is the
oscillator ground state. The spectral function is normalized to integrate to unity since
〈e−i�(t)ei�(t)〉 = 1.

The short-time approximation toP(t) can be constructed straightforwardly using the
spectral function above and ordinary time-dependent perturbation theory. We find

P(t) = 1 − 12

2

∫
dω ρ�(2ω)

sin2(ωt)

ω2
+ · · · . (10)

Notice that whenα > 1, ρ�(ω) ∼ ω−1+2α results in an infrared-convergentP(t); in the limit
1 → 0, P(t) → 1 for all t . This corresponds to the irrelevance of1 and the localization
of the spin predicted by Chakravarty and Bray and Moore [16] based on a mapping of the
TLS to the inverse squared Ising model.

Conversely, forα → 0, ρ�(ω) → δ(ω) andP(t) = 1 − (12/4)t2 + · · ·, in agreement
with the expansion of the exact resultP(t) = (1 + cos1t)/2. For 0< α < 1 we are in a
more complicated region. Clearly the difference betweenP(t) and 1 grows to order unity
for any arbitrarily small1 throughout this region (the simply reflects the renormalization
group relevance of1) and one would at first sight be tempted to conclude that throughout



10094 S P Strong and D G Clarke

this regionP(t) would undergo damped oscillations with a period approximately given by
tosc, wheretosc satisfies

1 = 12

2

∫
dω ρ�(2ω)

sin2(ωtosc)

ω2
. (11)

One should be cautious, however, in view of the fact that forα > 1/2 the spectral function
for the tunnelling operator is vanishing at low frequencies and, atα = 1/2, it is flat and
featureless out to the cut-off scale. A flat spectral function is equivalent to a featureless
density of states and is exactly the condition under which the Golden Rule approximation
should be valid, implying incoherent decay without any recurrence effects or oscillations.
In fact, the exact solution of the TLS at the special valueα = 1/2 shows purely incoherent
relaxation inP(t), and, while the true behaviour ofP(t) in the region 1/2 < α < 1 is not
rigorously known [15], there are reasons for believing that the behaviour there is no less
incoherent. The simple reason for this is that, since in these cases the spectral function
has even more high-energy weight, perturbation theory in1 is even less coherent than for
α = 1/2. Incoherence is the direct result of the non-degeneracy of the perturbation theory
in 1. Let us discuss this important point in more detail.

The important physical effect of finiteα is that there is a substantial contribution to
P(t) from transitions to states with energies that are larger than the putative renormalized
oscillation frequency,1R ∼ t−1

osc (see equation (11)). When the amount of weight in these
transitions is larger than the amount of weight in transitions to low-energy states, it no longer
makes sense to consider the effects of1 to be coherent. Effectively, each change of state,
i.e. flipping of the spin, is accompanied by the creation or annihilation of a sufficient number
of bosons in the environmental bath that the phase of that history is randomized compared
to those of histories with no spin flip. Intuitively,one has crossed over from degenerate or
nearly degenerate perturbation theory to non-degenerate perturbation theory(as opposed to
the transition to irrelevant1 where the long-time perturbation theory becomes convergent).

To see that this picture does agree with the known TLS results, let us calculate the
contribution toP(t) from transitions to states with various energies. The low-energy part
contributes toP(t) an amount

δPlow(t) = 12

2

∫ 1/t

0
dω ρ�(2ω)

sin2(ωt)

ω2
+ · · ·

∼ 12

22−2α
t2−2α0−1(2α)

1F2(−1 + α; 1
2, α; −1) − 1

4(1 − α)
(12)

where1F2 is a generalized hypergeometric function [17]. This evaluates to1
412t2 at α = 0

and, forα = 1/2, to 1
412t (2 Si(2)+ cos 2− 1) ≈ 0.4512t (Si is the sine integral function).

The high-energy part contributes

δPhigh(t) = 12

2

∫ ∞

1/t

dω ρ�(2ω)
sin2(ωt)

ω2
+ · · ·

∼ 12

22−2α
t2−2α0−1(2α)

(
1

4(1 − α)
+ 0(2α) cosπα

22α(1 − 2α)(1 − α)

− 1F2(−1 + α; 1
2, α; −1)

4(1 − α)

)
. (13)

For α → 0 the high-energy part vanishes like0−1(2α) (the prefactor is1
412t2( 3

2 − γ −
ln 2+ 1

62F3(1, 1; 2, 5/2, 3; −1)) ≈ 0.112t2), while for α = 1/2 the result is(1/2π)12t (1+
π − 1F2(− 1

2; 1
2, 1

2; −1) ≈ 0.3412t , comparable to the low-energy contribution.
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Clearly, the high-energy contribution is insignificant asα → 0 because of the divergence
of 0(2α) (the gamma function has a simple pole at 0) and, for any arbitrary division into
‘high’ and ‘low’, could always be made so by taking a suitably smallα. One therefore
expects to find coherence in the limitα → 0. On the other hand, for finite values ofα the
high-energy part can be as important as the low-energy part, depending upon our division
into high- and low-energy integrals. Using the qualitatively reasonable division above, we
see that forα = 1/2 the two contributions are in fact comparable. In fact, for any division
scheme involving energy scales small compared to the oscillator cut-off, the high-energy
part must dominate for someα < 1, since, in the limit whereα → 1, the high-energy
part diverges logarithmically like(12/2ω2

c ) ln(ωct) while the low-energy part is finite and
given by (12/2ω2

c )(γ + ln(2) − Co(2)) ≈ 0.8512/2ω2
c , where Co is the cosine integral

function andγ is Euler’s constant. The high-energy part can therefore be made arbitrarily
large compared to the low-energy part for any arbitrary partition into high- and low-energy
pieces as we approachα = 1. The dominance of the high-energy part does not necessarily
imply that the quantum oscillations must cease entirely; it could be that the oscillations
would persist but become arbitrarily heavily damped. However, when the high-energy part
has become of order one, the argument that oscillations should occur with a frequency
ωosc ∼ 1R becomes unreliable and, in fact, as we have seen above, the conclusion of the
exact solution [15] is that the oscillations vanish forα = 1/2.

The reason for the success of our perturbation theory, which is essentially a ‘short-time
expansion’, in predicting a qualitative change in the tunnelling is that the expansion is valid
out to precisely the time when the spin has order one probability of flipping and is therefore
perfectly adequate to describe the nature of the states reached by spin-flip processes. In
particular, it can identify whether these states are nearly degenerate with the initial state
(and each other) or of widely disparate energies, which is the essential physical question
for coherence. Hence, the main conclusions of this section: the qualitative behaviour of
P(t), in the sense of whether or not it exhibits oscillations, i.e. quantum coherence, can
actually be determined from lowest-order perturbation theory. The special pointα = 1/2,
at which the Golden Rule is naively applicable, separates a region of completely incoherent
behaviour, 1/2 6 α < 1, from one of damped oscillations, 0< α < 1/2.

4. The connection to fermionic hopping

The existence of a third regime in the TLS problem with behaviour qualitatively different
from that occurring for irrelevant tunnelling or undamped tunnelling is suggestive; however,
before we can claim that the lessons of the TLS have any relevance to the fermionic
hopping we must make some firmer connection between the tunnelling matrix element,1,
and the single-particle hopping,t⊥, between non-Fermi liquids, in our case one-dimensional
Luttinger liquids.

We will study this problem using bosonization techniques [10, 11]. General, gapless,
one-dimensional interacting electronic systems and higher-dimensional Fermi liquids can
both be studied via this approach so our results can be made at least that general.

The Hamiltonians of the isolated systems are of the general Luttinger-liquid form:

H = 1

4π

∫
dx (vρKρ(∂2ρ)

2 + vρK
−1
ρ (∂8ρ)

2 + vσKσ (∂2σ )2 + vσKσ (∂8σ )2)

= 1

4π

∫
dx (vρ,N (∂2ρ)

2 + vρ,J (∂8ρ)
2 + vσ,N(∂2σ )2 + vσ,J (∂8σ )2) (14)

whereKρ is interaction dependent and less than one for a repulsive interaction, whileKσ
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is set to one hereafter as a consequence of considering only interactions which preserve the
SU(2) spin invariance. The bosonized form for the electron operator is given by

9
†
↑(x) ∼

√
∂8↑(x)

π

∑
m odd

Am exp(i[m8↑(x) + 2↑(x)]) (15)

so the interliquid hopping is given by

9
†,(1)

↑ (x)9
(2)
↑ (x) ∼

√
∂8

(1)
↑ (x)

π

∑
m odd

Am exp(i[m8
(1)
↑ (x) + 2

(1)
↑ (x)])

×
√

∂8
(2)
↑ (x)

π

∑
m odd

A?
m exp(i[m8

(2)
↑ (x) − 2

(2)
↑ (x)]) (16)

where

2↑ = 2−1/2(2ρ + 2σ) (17)

2↓ = 2−1/2(2ρ − 2σ) (18)

and

2ρ(x) = 20
ρ + Nρx/L − i

∑
q 6=0

∣∣∣∣ 2π

qL

∣∣∣∣1/2

K−1/2
ρ sgn(q)eiqx(b†

ρ(q) + bρ(−q)) (19)

8ρ(x) = 80
ρ + Jρx/L − i

∑
q 6=0

∣∣∣∣ 2π

qL

∣∣∣∣1/2

K1/2
ρ sgn(q)eiqx(b†

ρ(q) − bρ(−q)) (20)

where thebρ-operators create and annihilate the bosonic, charge-density eigenexcitations.
Similar expressions obviously apply for2σ and8σ . The expression for hopping of down-
spin electrons is easily obtained by changing the sign of2σ and8σ in equation (16), while
that for hops in the other direction can be obtained by interchanging the chain labels in
equation (16).

In the above expressions the operators20
↑ and 80

↑ are canonically conjugate to the
conserved quantum numbersJ↑ andN↑ and are not expressible in terms of the bosons. The
role of these operators was stressed by Haldane in his solution of the Luttinger model [11];
however, they are generally ignored since they do not enter into single-particle correlation
functions. They will be crucial for our discussion since it is the quantum numbersN

and J that are analogous toσz in the TLS problem. This is readily apparent when the
canonically transformed form for the tunnelling matrix element,(1/2)σ+e−i� + HC (see
equation (7)), is compared to the bosonized form for the interchain hopping in equation
(16). Both contain operators which act to raise and lower otherwise conserved quantum
numbers (σz for the TLS andN↑,1 − N↑,2, J↑,1 − J↑,2, etc for the fermion hopping). In
addition to the raising and lowering operators, both contain exponentials in bosonic creation
and annihilation operators which are responsible for the interesting dynamics and determine
the correlation functions of the operators. In fact, if the fermionic hopping occurred at only
a single point in space, that problem could be mapped onto the TLS problem. We do not
believe that such a mapping exists for the physical model of a uniform interchain hopping.
However, the formal connection between the models is quite strong and suggests that the
interesting incoherent regime for the TLS might well have a fermionic analogue.

The analogue toP(t) for the fermionic problem is clear: instead of taking a system
adapted to1 = 0 with σz = 1 and then turning on1 suddenly, we take the ground state
of a system with some non-zero values forN↑,1 − N↑,2, J↑,1 − J↑,2, etc tot⊥ = 0 and then
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turn on t⊥ suddenly. Instead of studying the resulting oscillations (or lack thereof) inσz(t)

we study them inN↑,1(t) − N↑,2(t), etc. For simplicity we will hereafter consider only the
case where the initial condition hasN↑,1−N↑,2 = J↑,1−J↑,2 = N↓,1−N↓,2 = J↓,1−J↓,2 =
δN(t = 0) 6= 0, i.e. equal numbers of up- and down-spin electrons are added at the right
Fermi point of one chain. We will follow the dynamics of〈δN(t 6= 0)〉.

This is a somewhat unfamiliar approach to studyingt⊥ so it is worth examining the
results for the simple case of free fermions. In that case, the problem is exactly soluble.
The requirement that the two chains be prepared in states adapted tot⊥ = 0 and in which
no Tomonaga bosons are excited but in whichδN(t = 0) 6= 0 is easily satisfied by simply
taking

n1,σ (k) = 2(kF − k + (2π/L)δN)2(kF + k)

while

n2,σ (k) = 2(kF − k)2(kF + k).

Since the free-fermion problem is a single-particle one everyk is independent and
independent oscillations occur for theδN states for whichn1,σ (k) − n2,σ (k) 6= 0. The
exact result for〈δN(t)〉 is δN(t = 0) cos(2t⊥t). This is exactly analogous to theα = 0 case
of the TLS and clearly corresponds to the interchain hopping being coherent. Given this
coherence, it is reasonable to expect that the description based on degenerate perturbation
theory in t⊥ and symmetric and antisymmetric combinations of the fermion operators for
the two chains will be appropriate.

Notice that in this sense free electrons (and also Fermi liquids although we have not
shown that here) exhibit a heretofore unremarked onmacroscopic quantum coherence: the
total number difference between two chains (or planes) of free electrons is a macroscopic
variable which would undergo oscillations, rather than incoherent relaxation, if a finite
interchain hopping were suddenly turned on. Viewed in this light it is not surprising that
there might exist states in which this macroscopic variable loses its coherence. Rather, it
is surprising (though undoubtedly correct for all normal metals) that macroscopic quantum
behaviour should occur in generic materials. It is interesting that this macroscopic quantum
coherence has not previously occasioned some concern in the theory of interacting electronic
systems. It turns out that the arguments that we have found guaranteeing the presence of
coherent oscillations in Fermi liquids rely in several places on the quasiparticle structure of
the Fermi liquid, which fails totally for interacting fermions in one spatial dimension. We
therefore believe that the postulate of previous works on arrays of chains of interacting
fermions coupled by a single-particle hopping [14] that the relevance oft⊥ signals a
crossover to a three-dimensionally coherent Fermi liquid is just that: a postulate. In fact,
we will see that the extension to coupled Luttinger liquids of the tools that we have used for
the TLS problem and coupled Fermi liquids does not support the conclusion that a relevant
t⊥ is always a coherentt⊥.

To begin our analysis of coupled Luttinger liquids, we require the spectral function
of the single-particle hopping operator between otherwise isolated Luttinger liquids. This
is easily obtained from the spectral function of the single-particle Green’s function. The
universal features of this function are readily accessible [18] as discussed in appendix A.
At the level of a linearized dispersion relation, the annihilation operator for momentum
k has the same spectral function (when the Fermi energy contribution to the energies is
taken out) as the creation operator for momentum 2kF − k. The hopping operator’s spectral
function can be obtained by convolving the spectral function of the individual creation and
annihilation operators.



10098 S P Strong and D G Clarke

For δN(t = 0) = 0, the spectral function for
∑

k c
†
1(k)c2(k) is given byLαω4α3−(1+4α)

where 2α = 1
4(Kρ + K−1

ρ − 2) is the anomalous exponent of the single-particle Green’s
function for the case with spin and 2α = 1

2(Kρ + K−1
ρ − 2) for the spinless case. Since

the spectral function vanishes asω → 0 the response tot⊥ is always incoherent for
δN(t = 0) = 0. This should not be surprising since forδN(t = 0) = 0 there is no
possibility of coherent oscillations in〈δN(t)〉. It is for this reason that for free particles
there would be no response forδN(t = 0) = 0 since their response is entirely coherent.
Fermi liquids would have a response but there would be no long-time singular behaviour,
the single-quasiparticle hopping having been completely blocked forδN(t = 0) = 0.

Notice that for the Luttinger liquid, the long-time incoherent responseis singular
provided that 4α < 1, despite the fact that coherent hopping is totally blocked. This suggests
that in some sense incoherent hopping is relevant and that flows away from thet⊥ = 0
fixed point may be dominated by this relevant operator, rather than the relevant operator
corresponding to coherent interliquid hopping. If this is the case, then the renormalization
group flows should end elsewhere than Fermi-liquid theory. This is due not only to the
anomalous exponent of the Luttinger liquid, but also the destruction of the Fermi surface.
No such effect would be present for a model with a single-particle Green’s function of the
form G(k, ω) ∼ (ω − vk)−1+2α.

〈δN(t)〉 is the natural quantity to study for coherence effects, however, we will not be
able to go beyond lowest order in perturbation theory (which should still be sufficient for
settling questions of coherence as we argued in the TLS case) and here the behaviour of
〈δN(t)〉 can be misleadingly coherent because it involves the subtraction of the contributions
from the hops in different directions. Clearly, if the hopping in both directions is incoherent,
then any coherence in the difference is an artifact. It is therefore useful to consider the
quantityP(t), defined as the probability of remaining in the initial state:

P(t) =
∣∣∣∣〈0| exp

(
i
∫ t

0
dt ′H ′(t ′)

)
|0〉

∣∣∣∣
∼ 1 − 4t2

⊥

∫
dω

sin2(ωt/2)

ω2
(ρ1→2(ω) + ρ2→1(ω)) + · · · . (21)

Note that oscillations inδN are the natural signature of coherence and no oscillatory
behaviour inP(t) is expected in general; however it is useful for the above reasons to
now restrict ourselves toP(t).

Let us now proceed with a short-time expansion analogous to that which we used for
the TLS. This should be valid for determining the presence or absence of coherence for
exactly the same reason as it was for that problem: the presence or absence of coherence
is equivalent to the near degeneracy or non-degeneracy of the states connected to the initial
state byt⊥. The short-time expansion is capable of revealing such features since it is valid
out to precisely the timescale where the initial state has been left behind. For simplicity,
we shall here consider only the case of spinless fermions.

For spinless fermions and finiteδN(t = 0) (k1
F > k2

F ) the initial spectral function for∑
k c

†
1(k)c2(k) is given by [19]

ρ2→1(ω) = 0−1(2α)0−1(2 + 2α)(2vS)
−(1+4α)2(ω − (E1

F − E2
F ) − vS(k

1
F − k2

F ))

× (ω − (E1
F − E2

F ) − vS(k
1
F − k2

F ))1+2α

× (ω − (E1
F − E2

F ) + vS(k
1
F − k2

F ))−1+2α (22)

and likewise

ρ1→2(ω) = 0−1(2α)0−1(2 + 2α)(2vS)
−(1+4α)2(ω − (E1

F + E2
F ) − vS(k

1
F − k2

F ))
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× (ω − (E2
F − E1

F ) − vS(k
1
F − k2

F ))−1+2α

× (ω − (E2
F − E1

F ) + vS(k
1
F − k2

F ))1+2α. (23)

P(t) is radically different, even at smallα, from the Fermi-liquids case. In fact for
small δN(t = 0), the incoherent part of the spectral function (high energy) completely
dominatesP(t) and may destroy coherence completely, if the incoherent (high-energy) hops
effect the coherent (low-energy) ones. One way to disentangle the coherent and incoherent
competition is to consider the spectral functions broken down into the contributions coming
from individual momenta. First, examine the spectral function forc

†
1(k)c2(k), which may be

obtained by convolving the spectral functions forc
†
1(k) andc2(k). The spectral function for

c
†
1(k) has support forω > E1

F + vS |k − k1
F |, wherevS is the sound velocity of the Luttinger

liquid. The spectral function behaves at largeω like

ρ†,1(ω large) ∼ ω−1+2α (24)

and behaves forω → E1
F + vS |k − k1

F | like

ρ†,1(ω small) ∼ (ω − (E1
F + vS |k − k1

F |))α−H(k−k1
F ) (25)

whereH(x) = 1 if x > 0 and 0 ifx 6 0. The integrated weight is 1− n1(k). The spectral
function for c2(k) has support forω > −E2

F + vS |k − k2
F |, also behaves at largeω like

ρ2(ω large) ∼ ω−1+2α (26)

and behaves forω → −E2
F + vS |k − k2

F | like

ρ2(ω small) ∼ (ω − (vS |k − k2
F | − E2

F ))α−H(k2
F −k). (27)

The integrated weight isn2(k).
The convolution has support forω > E1

F − E2
F + vS |k − k1

F | + vS |k − k2
F | which

means that except for fork2
F 6 k 6 k1

F the threshold isE1
F − E2

F + 2vS |k − k
avg

F | where
k

avg

F = (k1
F + k2

F )/2. The behaviour asω → E1
F − E2

F + 2vS |k − k
avg

F | is

ρ†,1,2(ω small) ∼ (ω − E1
F − E2

F + 2vS |k − k
avg

F |)4α. (28)

For the case wherek2
F 6 k 6 k1

F , the threshold is smallest; there thek-independent threshold
is given by

ωmin(k) = E1
F − E2

F + vS(k − k2
F ) − vS(k − k1

F ) = E1
F − E2

F + vS(k
1
F − k2

F ) > 0. (29)

The behaviour of the spectral function asω → E1
F − E2

F + vS(k
1
F − k2

F ) is

ρ†,1,2(ω small) ∼ (ω − E1
F − E2

F + vS(k
1
F − k2

F ))1+4α. (30)

The positivity of the minimum-energy results and the large exponent with which the spectral
function vanishes result from the fact that hops in this direction are ‘wrong-way’ hops; that
is, they increase rather than decrease the initialδN .

The behaviour for largeω is given by

ρ†,1,2(ω large) ∼ ω−1+4α. (31)

The integrated weight is(1 − n1(k))n2(k).
The spectral function forc†

2(k)c1(k) is similar. The spectral function forc†
2(k) has

support forω > E2
F + vS |k − k2

F |, behaves at largeω like

ρ†,2(ω large) ∼ ω−1+2α (32)

and behaves forω → E2
F + vS |k − k2

F | like

ρ†,2(ω small) ∼ (ω − (E2
F + vS |k − k2

F |))α−H(k−k2
F ). (33)
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The integrated weight is 1− n2(k). The spectral function forc1(k) has support for
ω > −E1

F + vS |k − k1
F |, also behaves at largeω like

ρ1(ω large) ∼ ω−1+2α (34)

and behaves forω → −E1
F + vS |k − k1

F | like

ρ1(ω small) ∼ (ω − (vS |k − k1
F | − E1

F ))α−H(k1
F −k). (35)

The integrated weight isn1(k).
The convolution has support forω > E2

F − E1
F + vS |k − k1

F | + vS |k − k2
F | which means

that except for fork2
F 6 k 6 k1

F the threshold isE2
F − E1

F + 2vS |k − k
avg

F |. The behaviour
asω → E2

F − E1
F + 2vS |k − k

avg

F | is

ρ†,2,1(ω small) ∼ (ω − E2
F − E1

F + 2vS |k − k
avg

F |)4α. (36)

For the case wherek2
F 6 k 6 k1

F , the threshold isE2
F − E1

F + vS(k
1
F − k2

F ), which
vanishes for weak interactions and is always smaller than the threshold for hops in the other
direction. The behaviour asω → E2

F − E1
F + vS(k

1
F − k2

F ) is

ρ(ω small) ∼ (ω − (E2
F − E1

F + vS(k
1
F − k2

F )))−1+2α. (37)

There is a power-law divergence. The behaviour for largeω is given by

ρ†,2,1(ω large) ∼ ω−1+4α. (38)

The total weight in the spectral function is given byn1(k)(1 − n2(k)).
In the region wherek2

F 6 k 6 k1
F a Fermi-liquid spectral function would be a

delta function at zero frequency, but here there is a power-law singularity at a non-zero,
negative frequency sinceE1

F − E2
F = (k1

F − k2
F )(vJ + vN)/2 is always larger than than

vS(k
1
F − k2

F ) = √
vJ vN(k1

F − k2
F ) [20]. The essential points are that the singularity is in

general not at zero energy and is a power law rather than a delta function.
Notice that when 4α > 1, none of the spectral functions for the individual momenta are

decreasing for largeω. The high-energy behaviour is thus incoherent which implies that
the response in thet⊥ → 0 limit is always incoherent at everyk at short times. The low-
energy behaviour forδN(t = 0) = 0 is also incoherent. This implies that the proposal of
incoherence forα > 1/4 is self-consistent, since incoherence leads to a vanishing oscillation
frequency,ωosc, and therefore the naturalk1

F − k2
F to consider isωosc/vF = 0, a case where

all the spectral functions are in fact incoherent. Notice that forα < 1/4 this consistency
is not present since, even fork1

F − k2
F = 0, some of the spectral functions associated with

momenta near to the Fermi surface are coherent. The self-consistency is therefore not trivial
and we believe that there is incoherence for allα > 1/4. Moreover, we can rule out the
possibility that the incoherent phase is pushed all the way toα = 1/2, where irrelevance
sets in. This cannot occur because, asα approaches 1/2, the high-energy piece is diverging
relative to the low-energy piece, just as in the TLS problem.

There remains the question of the effect of higher-order terms on these arguments. The
only physically significant effect at higher order is interactions among the hopped fermions
which we believe will be detrimental to coherence, pushing it to lower values ofα than
1/4 [19]. For coherence to be restored at higher order, the initial spectral functions for the
initial hops would have to have been gross misrepresentations of the spectral functions for
later hops, and there is no reason at all for believing that this occurs, but we have been
unable to rigorously solve for all of the effects of higher-order processes.

If the fermionic hopping is incoherent and〈δN〉 does not oscillate, then the implications
of this for the physics of such a system should be dramatic. If we follow the usual
assumption of the TLS problem, then the absence of interference effects in〈δN〉 implies
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that interference effectsin generalshould not be observable in such a system for histories
which involve fermionic hopping between the Luttinger liquids. The presence of a higher-
dimensional Fermi surface for many chains or two split Fermi surfaces for two chains are
the direct result of such interference effects and one expects that they will not result in the
incoherent regime. It is for this reason that the incoherent regime must constitute a totally
different fixed point from states where the coherence is not confined to theab-plane—
the shape of the Fermi surface provides an order parameter which distinguishes the two
phases in the low-energy, long-time limit. All of these qualitative features can clearly be
carried over to a higher-dimensional analogue where non-Fermi-liquid chains are coupled
incoherently.

In this case, there should be a host of strange physical properties associated with the
incoherence. The temperature dependence of the conductivity is a difficult problem from
this point of view and it is not clear that the activated behaviour seen in underdoped
YBa2Cu3O6+x and Bi2Sr2CaCu2O8 can be explained by incoherence alone. It more probably
results from the presence of some other relevant operator such as an interplaneJ . However,
the incoherence proposal seems to work remarkably well for the other experimental results.
For instance, we expect an optical conductivity in thec-direction which exhibits no Drude
peak at low frequencies and rises weakly with frequency at high frequencies [21]. The
idea of confined coherence is at least consistent with all of the known behaviours ofc-axis
transport in the cuprates, and, in particular, it is consistent with the peculiarly contradictory
features discussed in section 1. However, the greatest experimental support for the proposal
comes from experiments on an anisotropic organic conductor, (TMTSF)2PF6. As we will
now discuss, this material directly exhibits a low-temperature phase in which interference
effects between histories involving interplane hops are totally absent [22].

5. Incoherence in (TMTSF)2PF6

(TMTSF)2PF6 is a highly anisotropic organic conductor. The material is triclinic and the
three real-space lattice directions are denoted bya, b andc, respectively, with the hopping
integrals in the three different directions estimated to be approximately 250 meV, 25 meV
and 1 meV. The Coulomb energy to put two electrons in the same unit cell is estimated at
about 1 eV, so the material should be strongly correlated as well as highly anisotropic. This
is especially true in light of the fact that the conduction band of the material is half-filled
at low temperatures due to a dimerization and the fact that the anisotropy is so large that
the corresponding Fermi surface should be topologically one dimensional, consisting of a
pair of warped Fermi sheets.

Reflecting the strong correlation effects, the low-temperature phase diagram of the
material is quite rich: the material is in a spin-density-wave state at ambient pressure and
temperatures below about 12 K, but becomes either superconducting (below about 1 K) or
metallic (at higher temperatures) on the application of pressure. In addition, in high magnetic
fields and pressures there is a cascade of field-induced spin-density-wave transitions [23].
For our purposes, we are interested in the metallic phase that occurs above about 6 kbar of
pressure and above 1 K (in zero field) or at lower temperatures in applied magnetic fields
of a few tesla. In this region the material exhibits highly anomalous magnetoresistance
behaviour [24] (see figure 1)

Specifically, for the resistivity measured either in the most conducting direction, parallel
to a, or in the least conducting direction, perpendicular to theab-planes, resistivity is a
strong function of magnetic field strength and orientation. For a material with isotropic
scattering and a topologically one-dimensional Fermi surface, the magnetoresistance in
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Figure 1. Resistance along the most conducting direction (in milliohms) as a function of
magnetic field strength and orientation. The field was rotated in thebc-plane and angle2 is
defined so that±90◦ coincide with theb-direction. Data are taken from reference [21].

the most conducting direction vanishes identically, so the greater-than-fivefold increases
possible in the resistivity are highly surprising. It is not believed that the effect can be
accounted for by an anisotropic scattering rate with any reasonable assumptions about the
electron–electron interaction [25].

In addition to the anomalously large magnitude of the magnetoresistance, there is also
a striking angular dependence with sharp minima occurring whenever the magnetic field
parallels a real-space lattice vector. These features are referred to as ‘Lebed magic angles’,
following a suggestion of Lebed’s that there should be features in the field-induced spin-
density-wave transition for fields with these orientations [23]. There are a number of
theoretical proposals to account for the presence of these commensurability features [26];
however, we will see that a magnetic-field-induced confinement of coherence to theab-
planes will provide a very natural one, and one which leads to a number of strong, and
strikingly confirmed, predictions.

The scenario that we envision is the following: due to the strong correlation and large
anisotropy, conduction in thec-direction in (TMTSF)2PF6 is nearly incoherent and, in
this sense, the material is nearly two dimensional. In this case it is important that an
applied magnetic field with a component perpendicular to theac-plane will render hopping
in the c-direction somewhat inelastic. To see this inelasticity, the field is incorporated
via a Peierls substitution, in which case the states connected by the hopping no longer
have the same momentum in thea-directions but instead differ in momentum byelcHb/c.
Since there is a well definedva

F due to the topologically one-dimensional Fermi surface,
the states connected by hopping in thec-direction will have their degeneracy lifted by
elcHbv

a
F /c ∼ 0.2Hb meV T−1. This added inelasticity will enhance the non-degeneracy of

the perturbation theory intc (the hopping in thec-direction) and if conduction out of the
ab-plane in zero field were nearly incoherent, the field might drive the material into the
purely incoherent regime. This effect clearly will not occur if the magnetic field is purely
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in the c-direction, and one expects the resistivity to dip sharply there. The out-of-ab-plane
resistivity should have the strongest dip nearc since it is precisely the conduction in that
direction that is changing character at the transition; however, the transition should also be
associated with a large change in thea-resistivity, because the material is really changing
between two different states, and the scattering effects in the incoherent state ought to be
more pronounced due to an effectively reduced dimensionality. This can clearly explain
the angle dependence of the magnetoresistance aroundc and, for any substantial hopping
integrals in theĉ ± b̂ direction, the dips associated with those directions as well; however,
the real strength of the theory lies in the other predictions that it leads to.

One immediate prediction is that the minimum in the magnetoresistance associated with
fields parallel tob has a different origin to the other minima: it is not associated with
the restoration of coherence and is therefore not a magic angle effect. This difference is
readily apparent in the data for resistivity in thea-direction where the magnetoresistance
has a cusp-like behaviour atb. Moreover, the value of the magnetoresistance for fields in
the b-direction is field independent above 1 T, while this is not true of the other minima.
It is important to note that the change in resistivity out of theab-planes is only order
one for large fields directed alongb. If the magnetic fields were somehow rendering the
interplane hopping irrelevant then we would not expect the much larger change in the
resistivity than this at temperatures of 0.5 K and we would not expect any saturation of
the magnetoresistance. Likewise a Fermi-liquid explanation of the resistivity out of the
ab-planes predicts no saturation of the resistivity for this field orientation. The observed
behaviour really only makes sense if there is a large incoherent hopping that is relatively
unaffected by the magnetic field and a small coherent hopping that is wiped out by the field.

Let us now discuss the behaviour away fromb and from the magic angles. The
field strength independence for fields oriented alongb is a direct consequence of the
most powerful prediction of the incoherence explanation of the magic angles behaviour:
the scaling of the magnetoresistance. Since the incoherent regime is categorized by the
impossibility of observing interference effects between histories in which particles leave
the ab-planes, it is clear that, neglecting Zeeman effects and treating the magnetic field
again at the level of a Peierls substitution, all physical properties should be independent of
the magnetic field components that lie in theab-plane. This is because in a path integral
calculation of any physical quantity, these components of the fields enter through a phase
factor proportional to the flux enclosed by these paths that leave theab-plane. This phase,
however, must be unimportant if interference effects between these paths are blocked by
the incoherence. The magnetoresistance in thea-direction should therefore demonstrate a
kind of scaling behaviour away from the magic angle dips, so if the resistance is replotted
versus only the component of the field out of theab-plane, then the curves obtained by
rotation of fields of different strengths should all lie on top of each other. Such a plot is
shown in figure 2 and the extent to which the results satisfy the prediction is striking.

Even more striking is the scaling of the resistance out of theab-plane shown in figure
3, since in this case the resistance depends only on the component of the magnetic field
parallel to the current!

In both cases, the magnetoresistance depends on the field through some anomalous
power law: 1R ∝ (H · n̂ab)

x with x ∼ 1/2 for resistivity in thea-direction andx ∼ 3/2
for resistivity in thec-direction. We are not able to calculate the form of the scaling functions
that our theory predicts at the present time; however, the presence of such anomalous power
laws is broadly compatible with the picture of incoherently coupled non-Fermi-liquid planes,
while these anomalous powers are not compatible with any of the previous proposals to
account for the magic angles behaviour [26].
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Figure 2. Magnetoresistance along the most conducting direction (in milliohms) as a function
of the square root of the component of the magnetic field perpendicular to theab-plane. As
explained in the text, the data are expected to scale away from the magic angle dips. Data taken
from reference [21].

This scaling should only occur away from the magic angles and for sufficiently large
fields, since otherwise the material is three-dimensionally coherent. The points taken from
the central magic angle dip in figure 2 clearly violate the scaling exactly as we expect, so
the prediction is satisfied at that level. The low-field anisotropy in the magnetoresistance
is currently being investigated by Chaikinet al [27] and the prediction that it should not
satisfy the scaling that occurs in the incoherent regime will thus be tested in the near future;
the present evidence is that the scaling is violated in exactly the manner as is expected at
low fields.

Danner and Chaikin [28] have also investigated the coherence question in (TMTSF)2PF6

directly using a novel resonance in thec-axis conductivity discovered by them [29]. The
resonance is a Fermi-liquid effect associated with the averaging of thec-axis velocity to
zero in a magnetic field due to the quasiclassical trajectories over the Fermi surface. It
should therefore be present in (TMTSF)2PF6 only in the coherent regions. This is exactly
what is found experimentally [28].

There is thus ample experimental evidence that (TMTSF)2PF6 undergoes a transition
in magnetic field at low temperatures to a state in which coherent transport is confined to
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Figure 3. The log of the resistance along the least-conducting direction (in ohms) as a function
of the log (base 10) of the component of the magnetic field (in tesla) perpendicular to theab-
plane. As explained in the text, the data are expected to scale away from the magic angle dips.
Raw data were provided by Danner and Chaikin.

the ab-planes of the material. The effect is more pronounced in cleaner samples and at
lower temperatures (thus ruling out impurity- or thermally induced incoherence) and, we
believe, provides direct experimental evidence for the existence of a new fixed point with
interaction-induced confinement of the coherence.

6. Final summary

The cuprate superconductors and certain organic conductors exhibit transport which is
qualitatively anisotropic, yet we have argued that other properties of these materials strongly
suggest the existence of a Fermi surface and low-energy excitations with substantial free-
electron character. The former of these features is very difficult to account for if the material
possesses three-dimensional coherence, while the latter is inconsistent with a description
based on a two-dimensional fixed point. We have therefore presented a new proposal
for these materials in which they are categorized by a fixed point at which transport in
one direction is not renormalization group irrelevant, but isintrinsically incoherent; the
incoherence is present for pure systems at zero temperature.

The defining property of a state with such confined coherence is that, since single-
electron coherence is confined to lower-dimensional subspaces (planes or chains), it is
impossible to observe interference effects between histories which involve electrons moving
between these subspaces. It is exactly this loss of interplane coherence, or confinement of
coherence, without the effective confinement of the underlying electrons, which is required
to understand the exotic magnetotransport properties exhibited by the organic superconductor



10106 S P Strong and D G Clarke

(TMTSF)2PF6. We believe that these experiments provide compelling experimental support
for our theoretical proposal.

Appendix A. Spectral functions of local operators in the Tomonaga–Luttinger model

The Tomonaga–Luttinger model provides a fascinating example of a soluble model of
an interacting-fermion problem with a non-Fermi-liquid ground state. The low-energy
eigenstates of the system consist of bosonic degrees of freedom representing collective
modes of the Fermi surface [10, 11]. There are no single-particle, fermionic, low-energy
eigenexcitations. Correspondingly the spectral functions of local operators in the model
display unusual features including multiple singularities with non-trivial power laws. The
properties of the single-electron spectral function were studied by Meden and Schönhammer
and Voit [18] by Fourier transforming the single-electron Green’s function. This procedure
is entirely correct; however, it is somewhat unintuitive and the results take on complicated
forms for the case of models with spin. We give here a prescription for calculating the
spectral functions of local operators from the appropriate space-time Green’s functions based
on the observation that many of the complications encountered in the Fourier transforming
of the relevant Green’s functions arise from the fact that a general local operator in the
Tomonaga–Luttinger model involves the creation of four distinct types of boson and these
complications are circumvented when the independent nature of the different boson types
is considered.

Using forms suitable for the calculations of spectral functions in the low-energy, long-
wavelength limit, the single-electron creation (ψ†

R or L(x)) and annihilation (ψR or L(x))
operators, the local singlet (ψR,↑(x)ψL,↓(x)) and triplet (ψR,↑(x)ψL,↑(x)) pairing operators

and the local charge- (ψ†
R,↑(x)ψL,↑(x) + ψ†

R,↓(x)ψL,↓(x)) and spin- (ψ†
R,↑(x)ψL,↓(x) +

ψ†
L,↑(x)ψR,↓(x)) density-wave operators can all expressed as sums of operators of the form

[10, 11]

8(x; αj ) = exp

(
i
∑

j

αjφ
†
j (x)

)
exp

(
i
∑

j

αjφj (x)

)
(A1)

where

φj (x) = (−1)j
πx

L
Nj + i

∑
q 6=0

2((−1)j q)

√
2π

L|q|e−iqxaq,j (A2)

wherea
†
q,j creates a density-wave excitation of thej -type fermions of the non-interacting

model:

a
†
q,j =

√
2π

L|q|
∑

k

ψ†
j (k + q)ψj (k). (A3)

Thej -index runs from one to four with with one corresponding to the left-moving, up-spin,
two to right-moving, up-spin, three to left-moving down-spin and four to right-moving
down-spin fermions. For the non-interacting Luttinger model (and in the low-energy limit
of the Tomonaga model) thea†

q,j create eigenexcitations:

H0 = vF

∑
j,q

(−1)j2((−1)j q)qa
†
q,j aq,j . (A4)
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In the low-energy limit of the interaction the Tomonaga–Luttinger model the eigenexcitations
are linear combinations of thea†

q,j :

Hint =
∑
j,q

(−1)j2((−1)j q)vjqb
†
q,j bq,j (A5)

where

bq,j =
∑

k

βjk

(
1 + (−1)k−j

2
aq,k + 1 − (−1)k−j

2
a

†
q,k

)
. (A6)

The original operators can then be expressed in terms of the new boson operators:

8(x; γi) ∼ exp

(
i
∑

j

γj ζ
†
j (x)

)
exp

(
i
∑

j

γj ζj (x)

)
(A7)

where

ζj (x) =
∑

k

βjk

(
1 + (−1)k−j

2
φq,k(x) + 1 − (−1)k−j

2
φ†q,k(x)

)
(A8)

and so

γj =
∑
m

β−1
jm αm (A9)

whereβ−1 is the inverse ofβ.
The operator,8, is a product of operators coupling to the different species of bosons,

resulting in a product form for the asymptotic, space-time Green’s function [10, 11]:

G(x, t) ∼
(

x + vct − i
sgn(t)

3

)p1
(

x − vct + i
sgn(t)

3

)p2

×
(

x + vst − i
sgn(t)

3

)p3
(

x − vst + i
sgn(t)

3

)p4

. (A10)

There is some ambiguity in the choice ofβs required to diagonalize the Hamiltonian. The
choice: β1 or 2,i = β1 or 2,i±2 and β3 or 4,i = −β1 or 2,i±2 is always possible and results in
pi = γ 2

i and, for that case, subscriptsc and s refer to charge (symmetric combination of
up- and down-spin bosons) and spin (anti-symmetric combination of up- and down-spin
bosons) bosons, respectively.

The analytic properties ofG are quite complicated and Fourier transforming directly to
find the spectral function is generically rather involved even numerically [18]. However,
on physical grounds one expects that a significant simplification can be achieved if one
recognizes that the form ofG is a simple product resulting from the fact that8 was a
product of independent operators. The spectral function of the product of operators of the
form exp(i

∑
j γj ζ

†
j (x)) should therefore be given by a convolution of the spectral functions

of the individual operators:

ρ8(k, ω) = Re
1

π

∫ ∞

0
dt eiωt

∫
dx e−ikx〈GS|8†(x, t)8(0, 0)|GS〉

=
∑
m

|〈m|8(0, 0)|GS〉|2δ(ω − Em)δ(k − pm)

=
∑

m1,m2,m3,m4

(∏
j

|〈mj | exp

(
i
∑

j

γj ζ
†
j (x)

)
|GS〉|2

)
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× δ

(
ω −

∑
j

Emj

)
δ

(
k −

∑
pmj

)
=

∫ ∏
j

dωj dkj ρj (kj , ωj )δ

(
k −

∑
kj

)
δ

(
ω −

∑
ωj

)
(A11)

where

ρj (kj , ωj ) =
∑
mj

∣∣∣∣∣〈mj | exp

(
i
∑

j

γj ζ
†
j (x)

)
|GS〉

∣∣∣∣∣
2

δ(ωj − Emj
)δ(kj − pmj

)

= Re
1

π

∫ ∞

0
dt eiωt

∫
dx e−ikx〈GS| exp

(
−i

∑
j

γj ζj

)
(x, t)

× exp

(
i
∑

j

γj ζ
†
j

)
(0, 0)|GS〉. (A12)

The utility of this decomposition for the Tomonaga–Luttinger model results from the
simple form of the spectral functions of the various parts of8. The spectral function for
the operator exp(i

∑
j γj ζ

†
j (x)) is given by

ρj (k, ω) = |k|−1−pj δ(ω − (−1)j vj k)2(ω)e−|k|/3 sin(−pjπ)

π
0(1 + pj )C(3) (A13)

whereC(3) is a cut-off-dependent constant andvj is the velocity of the type-j bosons.
The convolutions are thus significantly simplified by the presences of multiple delta

functions. ForN non-zeroγ s there areN delta functions of this type plus two overall
delta functions for 2N variables of integration. Thus in the worst case the spectral function
involves two non-trivial integrations, but even these are only of simple power laws.

For example, for the spinless Tomonaga–Luttinger model the spectral function for the
electron creation operator involves only one type of right- and left-moving boson and there
are no non-trivial integrations to perform. The piece of the spectral function coming from
the right Fermi point is given by

ρ(k, ω) ∝
∫ ∞

0
dω1 dω2 dk1 dk2 δ(ω − ω1 − ω2)δ(k + k1 − k2)

× δ(ω1 − vk1)δ(ω2 − vk2)k
−1−p1
1 k

−1−p2
2

∝ 2(ω − vk)2(ω + vk)(ω − vk)−1−p1(ω + vk)−1−p2 (A14)

wherek is measured fromkF . The singularity at the onset frequency arises because at that
frequency it is possible to insert very little momentum into the left-moving bosons and the
matrix element for this is singular ask → 0.

This is the general source of all power-law singularities which arise in the spectral
functions of local operators in the Tomonaga–Luttinger model: the divergence of matrix
elements to create states with very little momentum carried by one or more types of bosons.
For instance, including spin with spin-dependent interactions so that the electron creation
operator coupled to four different kinds of boson would result in a singularity atω = vck with
exponent−1−p1−p3−p4, resulting from the convolution of the singularities contributed by
the three species of bosons for whichω 6= vck. (Here theps are those entering the real-space
single-electron Green’s function and may be obtained from the Bogoliubov transformation
which diagonalizesHint once all interactions have been written in bosonized form.) The
piece of the creation operator spectral function coming from the right Fermi point is given
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by

ρ(k, ω) ∝
∫ ∞

0
dω1 dω2 dω3 dω4 dk1 dk2 dk3 dk4 δ(ω1 − vck1)δ(ω2 − vck2)δ(ω3 − vsk3)

× δ(ω4 − vsk4)δ(ω − ω1 − ω2 − ω3 − ω4)δ(k + k1 − k2 + k3 − k4)

× k
−1−p1
1 k

−1−p2
2 k

−1−p3
3 k

−1−p4
4 (A15)

or

ρ(k, ω) ∝
∫ ∞

0
dω1 dω2 2(ω1)2(ω2)2

(
ω − vsk −

(
1 + vs

vc

)
ω1 −

(
1 − vs

vc

)
ω2

)
× 2

(
ω + vsk −

(
1 − vs

vc

)
ω1 −

(
1 + vs

vc

)
ω2

)
× ω

−1−p1
1 ω

−1−p2
2

(
ω − vsk −

(
1 + vs

vc

)
ω1 −

(
1 − vs

vc

)
ω2

)−1+p3

×
(

ω + vsk −
(

1 − vs

vc

)
ω1 −

(
1 + vs

vc

)
ω2

)−1+p4

(A16)

which has exactly the singularity atω = vck expected. In general a singularity in the above
can occur forω = vik and the exponent of the singularity is always given by−1−∑

j 6=i pj .
Note that equation (A16) gives the low-energy, long-wavelength spectral function for

any local operator whose real-space Green’s function is given by equation (A10), so the
above formula gives the spectral function for any local operator in terms of the exponents
and velocities entering into its space-time Green’s function. The same type of singularity at
ω = vik is present for all operators with the same sum ofpj s for j 6= i. It is only through
the dependence of this and other such sums on the actual operator that different operators
acquire different types of singularity.

This method gives a simple, intuitive way of obtaining the spectral function of all local
operators in the Tomonaga–Luttinger model; however, it suffers from two drawbacks. The
first drawback to this approach to obtaining the spectral function arises from the fact that
the inclusion of the cut-off in equation (A10) is not strictly correct. The spectral functions
obtained fromG will therefore not correctly reproduce cut-off related features and are, as a
result, in general, not properly normalized. Once properly normalized they should properly
reproduce all of the low-energy physics.

The second drawback is that the real part ofG(k, ω) is not obtained directly in this
approach, but requires a further Hilbert transform of the spectral function. Since all
of the physical information is encoded inρ(k, ω), this is not that serious a problem,
but for numerical applications where the real part ofG is required it will be a
significant disadvantage for this approach compared with methods based on direct Fourier
transformation of the real-space Green’s function.
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